China Standard Space-Saving Planetary Gearbox Design for Collaborative Robots components of gearbox

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
070 090 115 155 205 235
Rated output torque T2n N.m 1 3 55 130 208 342 588 1140
4 50 140 290 542 1050 1700
5 60 160 330 650 1200 2000
7 35 140 300 550 1100 1800
8 35 120 260 500 1000 1600
10 23 48 140 370 520 1220
2 12 55 130 208 342 588 1140
15 55 130 208 342 588 1140
20 50 140 290 542 1050 1700
25 60 160 330 650 1200 2000
28 60 160 330 650 1200 2000
30 60 160 330 650 1200 2000
35 60 160 330 650 1200 2000
40 60 160 330 650 1200 2000
50 60 160 330 650 1200 2000
70 35 140 310 550 1100 1800
100 23 48 140 370 520 1220
3 120 60 160 330 650 1200 2000
150 60 160 330 650 1200 2000
200 60 160 330 650 1200 2000
250 60 160 330 650 1200 2000
280 60 160 330 650 1200 2000
350 60 160 330 650 1200 2000
400 60 160 330 650 1200 2000
500 60 160 330 650 1200 2000
700 35 140 310 550 1100 1800
1000 23 48 140 370 520 1220
Maximum output torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque
Rated input speed N1n rpm 1,2,3 3~1000 5000 3000 3000 3000 3000 2000
Maximum input speed N1b rpm 1,2,3 3~1000 10000 6000 6000 6000 6000 4000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
High Precision Backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Precision Backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9
Standard Backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 3.5 10.5 20 39 115 180
Allowable radial force F2rb2 N 1,2,3 3~1000 1100 2200 5571 7610 10900 24000
Allowable axial force F2ab2 N 1,2,3 3~1000 630 1230 2550 3780 5875 11200
Moment of Inertia J1 kg.cm2 1 3~10 0.2 1.2 2 7.2 25 65
  2 12~100 0.08 0.18 0.7 1.7 7.9 14
  3 120~1000 0.03 0.01 0.04 0.09 0.21 0.82
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise Level dB 1,2,3 3~1000 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 1.3 3.7 7.8 14.5 29 48
2 12~100 1.9 4.1 9 17.5 33 60
3 120~1000 2.3 4.8 12 22 37 72

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

gearbox

Common Problems with Gearboxes and How to Troubleshoot Them

Gearboxes can encounter various issues over time. Here are some common problems and troubleshooting steps:

  1. Noise and Vibration: Excessive noise or vibration may indicate misalignment, worn gears, or insufficient lubrication. Check alignment, inspect gears for wear, and ensure proper lubrication.
  2. Overheating: Overheating can be caused by high friction, inadequate lubrication, or overloading. Verify lubrication levels, reduce loads, and ensure proper ventilation.
  3. Leakage: Oil leaks may result from worn seals or gaskets. Inspect and replace damaged seals, and ensure proper sealing.
  4. Reduced Performance: Decreased performance could be due to worn gears, damaged bearings, or misalignment. Inspect components, replace damaged parts, and realign as needed.
  5. Gear Wear and Tooth Damage: Wear on gear teeth can result from excessive loads or poor lubrication. Replace worn gears and ensure proper lubrication.
  6. Shaft Misalignment: Shaft misalignment can lead to increased wear and noise. Realign shafts using precision measurement tools.
  7. Lubrication Issues: Inadequate or contaminated lubrication can cause premature wear. Regularly check and replace lubricant, and use the correct type for your gearbox.
  8. Bearing Failure: Bearing failure may result from overload, misalignment, or inadequate lubrication. Replace worn bearings and address underlying issues.
  9. Seal Damage: Damaged seals can lead to leaks and contamination. Replace seals and ensure proper installation.
  10. Gearbox Lockup: Gearbox lockup may occur due to foreign objects or damaged components. Disassemble and inspect the gearbox, removing any obstructions and replacing damaged parts.

Regular maintenance, proper lubrication, and timely troubleshooting are key to addressing gearbox problems and ensuring smooth operation.

China Standard Space-Saving Planetary Gearbox Design for Collaborative Robots   components of gearbox	China Standard Space-Saving Planetary Gearbox Design for Collaborative Robots   components of gearbox
editor by CX 2024-04-12